Decarbonization pathways for the residential sector in the United States

  • World Energy Balances 2020 (IEA, 2020); https://www.iea.org/data-and-statistics/data-product/world-energy-balances

  • Berrill, P., Gillingham, K. T. & Hertwich, E. G. Drivers of change in U.S. residential energy consumption and greenhouse gas emission, 1990–2015. Environ. Res. Lett. 16, 03045 (2021).

    Article 

    Google Scholar
     

  • Cole, W. J. et al. Quantifying the challenge of reaching a 100% renewable energy power system for the United States. Joule 5, 1732–1748 (2021).

    Article 

    Google Scholar
     

  • Denholm, P. et al. The challenges of achieving a 100% renewable electricity system in the United States. Joule 5, 1331–1352 (2021).

    Article 

    Google Scholar
     

  • Power, A. Does demolition or refurbishment of old and inefficient homes help to increase our environmental, social and economic viability? Energy Policy 36, 4487–4501 (2008).

    Article 

    Google Scholar
     

  • Dubois, M. & Allacker, K. Energy savings from housing: ineffective renovation subsidies vs efficient demolition and reconstruction incentives. Energy Policy 86, 697–704 (2015).

    Article 

    Google Scholar
     

  • Ding, G. & Ying, X. Embodied and operating energy assessment of existing buildings—demolish or rebuild. Energy 182, 623–631 (2019).

    Article 

    Google Scholar
     

  • Cabrera Serrenho, A., Drewniok, M., Dunant, C. & Allwood, J. M. Testing the greenhouse gas emissions reduction potential of alternative strategies for the English housing stock. Resour. Conserv. Recycl. 144, 267–275 (2019).

    Article 

    Google Scholar
     

  • Berrill, P., Miller, T. R., Kondo, Y. & Hertwich, E. G. Capital in the American carbon, energy, and material footprint. J. Ind. Ecol. 24, 589–600 (2020).

    Article 

    Google Scholar
     

  • Schwartz, Y., Raslan, R. & Mumovic, D. The life cycle carbon footprint of refurbished and new buildings—a systematic review of case studies. Renew. Sustain. Energy Rev. 81, 231–241 (2018).

    Article 

    Google Scholar
     

  • Saheb, Y. COP26: sufficiency should be first. Build. Cities https://www.buildingsandcities.org/insights/commentaries/cop26-sufficiency.html (2021).

  • Samadi, S. et al. Sufficiency in energy scenario studies: taking the potential benefits of lifestyle changes into account. Technol. Forecast. Soc. Change 124, 126–134 (2017).

    Article 

    Google Scholar
     

  • Lorek, S. & Spangenberg, J. H. Energy sufficiency through social innovation in housing. Energy Policy 126, 287–294 (2019).

    Article 

    Google Scholar
     

  • Thomas, S. et al. Energy sufficiency policy for residential electricity use and per-capita dwelling size. Energy Effic. 12, 1123–1149 (2019).

    Article 

    Google Scholar
     

  • Cohen, M. J. New conceptions of sufficient home size in high-income countries: are we approaching a sustainable consumption transition? HousingTheory Soc. 38, 173–203 (2021).


    Google Scholar
     

  • Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515 (2018).

    Article 

    Google Scholar
     

  • Pauliuk, S. et al. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12, 5097 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with minimum energy: a global scenario. Glob. Environ. Change 65, 102168 (2020).

    Article 

    Google Scholar
     

  • Berrill, P. & Hertwich, E. Material flows and GHG emissions from housing stock evolution in US counties, 2020–2060. Build. Cities 2, 599–617 (2021).

    Article 

    Google Scholar
     

  • Ellsworth-Krebs, K. Implications of declining household sizes and expectations of home comfort for domestic energy demand. Nat. Energy 5, 20–25 (2020).

    Article 

    Google Scholar
     

  • Goldstein, B., Reames, T. G. & Newell, J. P. Racial inequity in household energy efficiency and carbon emissions in the United States: an emissions paradox. Energy Res. Soc. Sci. 84, 102365 (2022).

    Article 

    Google Scholar
     

  • Cole, W., Corcoran, S., Gates, N., Mai, T. & Das, P. 2020 Standard Scenarios Report: A U.S. Electricity Sector Outlook (NREL, 2020); https://www.nrel.gov/docs/fy21osti/77442.pdf

  • FACT SHEET: President Biden Sets 2030 Greenhouse Gas Pollution Reduction Target Aimed at Creating Good-Paying Union Jobs and Securing U.S. Leadership on Clean Energy Technologies (The White House, 2021); https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-s-leadership-on-clean-energy-technologies/

  • Otto, I. M. et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proc. Natl Acad. Sci. USA 117, 2354–2365 (2020).

    CAS 
    Article 

    Google Scholar
     

  • United States Mid-Century Strategy for Deep Decarbonization (The White House, 2016); https://unfccc.int/files/focus/long-term_strategies/application/pdf/us_mid_century_strategy.pdf

  • IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds V. Masson-Delmotte et al.) (Cambridge Univ. Press, 2021). https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf

  • van den Berg, N. J. et al. Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Clim. Change 162, 1805–1822 (2020).

    Article 

    Google Scholar
     

  • Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).

    Article 

    Google Scholar
     

  • Pamenter, S. & Myers, R. J. Decarbonizing the cementitious materials cycle: a whole-systems review of measures to decarbonize the cement supply chain in the UK and European contexts. J. Ind. Ecol. 25, 359–376 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Arceo, A., Tham, M., Guven, G., Maclean, H. L. & Saxe, S. Capturing variability in material intensity of single-family dwellings: a case study of Toronto, Canada. Resour. Conserv. Recycl. 175, 105885 (2021).

    Article 

    Google Scholar
     

  • Goldstein, B., Gounaridis, D. & Newell, J. P. The carbon footprint of household energy use in the United States. Proc. Natl Acad. Sci. USA 54, 201922205 (2020).


    Google Scholar
     

  • World Energy Outlook 2020 (IEA, 2020); https://www.iea.org/reports/world-energy-outlook-2020

  • Electric Power Annual 2020 (Table 4.2B) (EIA, 2021); https://www.eia.gov/electricity/annual/

  • Acevedo, A. L. F. et al. Design and valuation of high-capacity HVDC macrogrid transmission for the continental US. IEEE Trans. Power Syst. 36, 2750–2760 (2021).

    Article 

    Google Scholar
     

  • Murphy, C. et al. Electrification Futures Study: Scenarios of Power System Evolution and Infrastructure Development for the United States (NREL, 2021); https://www.nrel.gov/docs/fy21osti/72330.pdf

  • Pantano, S., Malinowski, M., Gard-Murray, A. & Adams, N. 3H ‘Hybrid Heat Homes’ (CLASP, 2021); https://www.clasp.ngo/research/all/3h-hybrid-heat-homes-an-incentive-program-to-electrify-space-heating-and-reduce-energy-bills-in-american-homes/

  • Deason, J., Wei, M., Leventis, G., Smith, S. & Schwartz, L. Electrification of Buildings and Industry in the United States: Drivers, Barriers, Prospects, and Policy Approaches (US DOE, 2018); https://www.osti.gov/biblio/1430688https://doi.org/10.2172/1430688

  • Billimoria, S. & Henchen, M. Regulatory Solutions for Building Decarbonization: Tools for Commissions and Other Government Agencies (RMI, 2020); https://rmi.org/insight/regulatory-solutions-for-building-decarbonization

  • State Policies and Rules to Enable Beneficial Electrification in Buildings through Fuel Switching (ACEEE, 2020); https://www.aceee.org/sites/default/files/pdfs/fuel_switching_policy_brief_4-29-20.pdf

  • Energy, Emissions and Equity (E3) Initiative (US DOE, 2021); https://www.energy.gov/eere/buildings/energy-emissions-and-equity-e3-initiative

  • Melvin, J. The split incentives energy efficiency problem: evidence of underinvestment by landlords. Energy Policy 115, 342–352 (2018).

    Article 

    Google Scholar
     

  • Gyourko, J., Hartley, J. & Krimmel, J. The Local Residential Land Use Regulatory Environment Across U.S. Housing Markets: Evidence from a New Wharton Index (NBER, 2019); https://www.nber.org/papers/w26573

  • Gray, M. N. & Millsap, A. A. Subdividing the unzoned city: an analysis of the causes and effects of Houston’s 1998 subdivision reform. J. Plan. Educ. Res. https://doi.org/10.1177/0739456X20935156 (2020).

  • Berrill, P., Gillingham, K. T. & Hertwich, E. G. Linking housing policy, housing typology, and residential energy demand in the United States. Environ. Sci. Technol. 55, 2224–2233 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ivanova, D. & Büchs, M. Household sharing for carbon and energy reductions: the case of EU countries. Energies 13, 1909 (2020).

  • Gagnon, P. et al. Cambium Documentation: Version 2021 (NREL, 2021); https://www.nrel.gov/docs/fy22osti/81611.pdf

  • Hauer, M. E. Population projections for U.S. counties by age, sex, and race controlled to shared socioeconomic pathway. Sci. Data 6, 190005 (2019).

  • 2017 National Population Projections Tables Projections for the United States: 2017 to 2060 (US Census Bureau, 2017); https://www.census.gov/data/tables/2017/demo/popproj/2017-summary-tables.html

  • Wilson, E. et al. Energy Efficiency Potential in Stock Energy Efficiency Potential in the U. S. Single-Family Housing Stock (NREL, 2017).

  • Berrill, P. & Hertwich, E. G. Material GHG intensities. Material flows and GHG emissions from housing stock evolution in US counties, 2020–2060. github https://github.com/peterberr/US_county_HSM/blob/main/Housing Archetypes/MatGHGint.xlsx (2021).

  • Status of State Energy Code Adoption (EIA, 2020); https://www.energycodes.gov/adoption/states

  • Energy and Water Conservation Standards and their Compliance Dates (Electronic Code of Federal Regulations, 2020); https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430/subpart-C/section-430.32https://www.ecfr.gov/cgi-bin/text-idx?rgn=div8&node=10:3.0.1.4.18.3.9.2

  • Residential Energy Efficiency (International Code Council, 2018); https://codes.iccsafe.org/content/iecc2018/chapter-4-re-residential-energy-efficiency

  • American Housing Survey (US Census Bureau, 2020).

  • Subpart C—General Stationary Fuel Combustion Sources. Federal Register—Rules and Regulations 74 (EPA, 2009); https://19january2021snapshot.epa.gov/ghgreporting/subpart-c-general-stationary-fuel-combustion-sources_.html

  • Cambium—Scenario Viewer and Data Downloader. Standard Scenarios 2020 (NREL, 2020); https://cambium.nrel.gov/

  • Mai, T., Lantz, E. & Mowers, M. The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment (NREL, 2017); https://www.nrel.gov/docs/fy17osti/70032.pdf

  • Mai, T. et al. Renewable Electricity Futures Study: Exploration of High-Penetration Renewable Electricity Futures Vol. 1 (NREL, 2012); https://www.nrel.gov/docs/fy12osti/52409-1.pdf

  • Ong, S., Campbell, C., Denholm, P., Margolis, R. & Heath, G. Land-Use Requirements for Solar Power Plants in the United States (NREL, 2013); https://www.nrel.gov/docs/fy13osti/56290.pdf

  • Sigrin, B., Gleason, M., Preus, R., Baring-Gould, I. & Margolis, R. The Distributed Generation Market Demand Model (dGen): Documentation (NREL, 2016); https://www.nrel.gov/docs/fy16osti/65231.pdf

  • ResStock. github https://github.com/NREL/resstock (2021).

  • State Energy Data System (SEDS): 1960–2018 (EIA, 2020); https://www.eia.gov/state/seds/seds-data-complete.php?sid=US

  • Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020 (EPA, 2022); https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020

  • Housing Units Completed. New Residential Construction—Historical Data (US Census Bureau, 2022); https://www.census.gov/construction/nrc/historical_data/index.html

  • Manufactured Housing Survey (US Census Bureau, 2022); https://www.census.gov/programs-surveys/mhs.html

  • Characteristics of New Housing (US Census Bureau, 2021); https://www.census.gov/construction/chars/

  • National Residential Efficiency Measures Database v3.1.0 (NREL, 2018); https://remdb.nrel.gov/measures.php

  • Berrill, P. peterberr/resstock_berrill: supporting code for ‘Decarbonization pathways for the residential sector in the United States’. github https://github.com/peterberr/resstock_berrill/tree/feature/projections (2022). https://doi.org/10.5281/zenodo.6656201

  • Less, B. D., Núria, I. S. W., Leo, C.-M. & Rainer, I. The Cost of Decarbonization and Energy Upgrade Retrofits for US Homes Energy Technologies Area (Lawrence Berkeley National Laboratory, 2021); https://eta-publications.lbl.gov/sites/default/files/final_walker_-_the_cost_of_decarbonization_and_energy.pdf, https://doi.org/10.20357/B7FP4D

  • Annual Energy Outlook 2022, Table 3 Energy Prices by Sector and Source (EIA, 2022); https://www.eia.gov/outlooks/aeo/data/browser/#/?id=3-AEO2022&cases=ref2022&sourcekey=0

  • Gross, R. & Hanna, R. Path dependency in provision of domestic heating. Nat. Energy 4, 358–364 (2019).

    Article 

    Google Scholar
     

  • Khanna, T. M. et al. A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings. Nat. Energy 6, 925–932 (2021).

  • Gerke, B. F. et al. Load-driven interactions between energy efficiency and demand response on regional grid scales. Adv. Appl. Energy 6, 100092 (2022).

    Article 

    Google Scholar
     

  • Gillingham, K. T., Huang, P., Buehler, C., Peccia, J. & Gentner, D. R. The climate and health benefits from intensive building energy efficiency improvements. Sci. Adv. https://www.science.org/doi/10.1126/sciadv.abg0947 (2021).

  • Wilkinson, P. et al. Public health benefits of strategies to reduce greenhouse-gas emissions: household energy. Lancet 374, 1917–1929 (2009).

    Article 

    Google Scholar
     

  • WHO Housing and Health Guidelines (ed. Stone, V.) Ch. 4 (WHO, 2018).

  • Tham, S., Thompson, R., Landeg, O., Murray, K. A. & Waite, T. Indoor temperature and health: a global systematic review. Public Health 179, 9–17 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *